Edge Mean Graph

P. Annammal, ${ }^{1}$ T. Nicholas ${ }^{2}$ and A. Lourdusamy ${ }^{3}$

[^0]
Abstract

Let $G=(V, E)$ be a finite simple undirected graph of order p and size q having no isolated vertices. Let $L=\{1,2, \ldots, q\}$ except for graphs having a tree as one component in which case $L^{\prime}=\{0,1,2, \ldots, q\}$. Let $f: E \rightarrow L\left(L^{\prime}\right)$ be an injection. For every v in V, let $f^{*}(v)=\left\lceil\frac{x}{d(v)}\right\rceil$ where $x=\sum f(e)$, the summation being taken over all edges e incident on v and $\lceil y\rceil$ denotes the smallest integer greater than or equal to y. If $f^{*}(v)$ are all distinct and belong to $L\left(L^{\prime}\right)$, we call f an edge mean labeling of G and a graph G that admits an edge mean labeling is called an edge mean graph. In other words f is an edge mean labeling of G if f induces an injection $f^{*}: V \rightarrow L\left(L^{\prime}\right)$. In this article, we investigate certain classes of graphs that admit edge mean labeling. We also show that cycles, complete graphs on 4 vertices and complete bipartite graph $K_{2,3}$ are not edge mean graphs.

Keywords: Edge mean labeling, edge mean graph
AMS Subject Classification: 05C78
(Received: 03 August 2010)

1 Introduction

A graph G is an ordered pair of sets $G=(V, E)$ where the elements of V are called points or vertices and the elements of E are called lines or edges. Labeling methods trace their origin to one introduced by Rosa in 1967. Labeling is a fast growing research area in Graph Theory. There are a number of graph labelings such as graceful labeling, harmonious labeling, cordial labeling, arithmetic labeling, magic-type labeling, antimagic labeling, prime labeling, mean labeling etc.

Definition: Let $G=(V, E)$ be a finite simple undirected graph of order p and size q having no isolated vertices. Let $L=\{1,2, \ldots, q\}$ except for graphs having a tree as one component in which case $L^{\prime}=\{0,1,2, \ldots, q\}$. Let $f: E \rightarrow L\left(L^{\prime}\right)$ be an injection. For every v in V, let $f^{*}(v)=\left\lceil\frac{x}{d(v)}\right\rceil$, where $x=\sum f(e)$, the summation being taken over all edges e incident on v and $\lceil y\rceil$ denotes the smallest integer greater than or equal to y. If $f^{*}(v)$ are all distinct and belong to $L\left(L^{\prime}\right)$, we call f an edge mean labeling of G and a graph G that admits an edge mean labeling is called an edge mean graph. In other words, f is an edge mean labeling of G if f induces an injection $f^{*}: V \rightarrow L\left(L^{\prime}\right)$. Some edge mean graphs are given in Fig. 1.1.

Figure 1.1: Some edge mean graphs.

In [1], Acharya and Hegde defined (k, d)-arithmetic graphs. They proved that if G is a (k, d)-arithmetic graph with k odd and d even then G is bipartite. They also proved that any (1,1)-arithmetic or (2,2)-arithmetic graph is either a star or has a triangle. In [5], Ponraj has defined mean graphs. A graph $G=(V, E)$ with p vertices and q edges is called a mean graph if it is possible to label the vertices $v \in V$ with distinct elements $f(v)$ from $0,1, \ldots, q$ in such a way that when edge $e=u v$ is labeled with $[f(u)+f(v)] / 2$ if $[f(u)+f(v)]$ is even and $[f(u)+f(v)+1] / 2$ if $[f(u)+f(v)]$ is odd, the resulting edge labels are distinct. f is called a mean labeling of G. He has showed that combs, cycles are mean graphs while the complete graph $k_{n}(n>3)$, the wheel $W_{n}(n>4)$ are not mean graphs. Similar concepts can be found in [2, 6]. A detailed account of various labeling problems can be found in the survey [3]. In this paper, we investigate certain classes of graphs that admit edge mean labeling and certain graphs which are not edge mean graphs. For terminology and symbols we refer to [4].

2 Main results

We note that from the definition, $K_{2}=P_{2}$ is not an edge mean graph. Copies of K_{2} are also not edge mean graphs.

Theorem 2.1. Let T be a tree of order p and size q. If T is an edge mean graph, then 0 must be the label of a pendant edge.

Proof. Since T is a tree, $p=q+1$. Therefore all the numbers $0,1,2, \ldots, q$ must appear as vertex labels. If 0 is the label of an intermediate edge, there will be no vertex with label 0 .

Theorem 2.2. Let T be a tree of order p and size q and be an edge mean graph. If v is a vertex of degree ≥ 3 such that there is at least one non-pendant edge incident on v.

Then the following cannot happen. Label of a non-pendant edge incident on v is q and the label of any other edge incident on v is $q-1$ simultaneously.

Proof. Let f be an edge mean labeling of T. Suppose the above statement is true, then $f^{*}(v)=\left\lceil\frac{q+(q-1)+\cdots}{d(v)}\right\rceil \leq q-1$ so that there cannot be any vertex with label q as q is the label of a non-pendant edge. Hence the theorem.

Theorem 2.3. Let G be a graph with an edge mean labeling f and u be a pendant vertex of G. Let the vertex v adjacent to u be of degree 2. If $f(u v)=n(1 \leq n \leq q)$, then the label of the other edge incident on v cannot be $n-1$.

Proof. Let the other edge incident on v be e. Suppose $f(e)=n-1$, then $f^{*}(v)=$ $\left\lceil\frac{f(e)+f(u v)}{2}\right\rceil=\left\lceil\frac{\overline{n-1}+n}{2}\right\rceil=n=f^{*}(u)$ which is a contradiction.

Theorem 2.4. Let $G=(p, q)$ be an edge mean graph with an edge mean labeling f which is not a tree and let $\delta(G) \geq p-2$. Then for every v in $V, f^{*}(v) \geq(p-1) / 2$ or $p / 2$ according as p is odd or even.

Proof. Since $\delta(G) \geq p-2$, there are at least $p-2$ edges incident on any $v \in V$. Hence $f^{*}(v) \geq\left\lceil\frac{1+2+\cdots+p-2}{p-2}\right\rceil=\frac{p-1}{2}$ or $\frac{p}{2}$ according as p is odd or even.

3 Edge mean labeling of some trees

In this section, we investigate certain trees for edge mean labeling.
Theorem 3.1. Any path $P_{n}(n>2)$ is an edge mean graph.
Proof. Let P_{n} be the path $u_{1} u_{2} \cdots u_{n-1} u_{n}$. Define $f: E\left(P_{n}\right) \rightarrow\{0,1,2, \ldots, n-1\}$ by

$$
f\left(u_{i} u_{i+1}\right)= \begin{cases}i-1, & 1 \leq i \leq n-2 \\ n-1, & i=n-1\end{cases}
$$

Then $f^{*}\left(u_{i}\right)=i-1,1 \leq i \leq n$.
Theorem 3.2. The star graph $K_{1, n}$ is an edge mean graph.
Proof. $K_{1,2}$ is the path P_{3} and hence an edge mean graph. Consider $K_{1, n}(n \geq 3)$ with central vertex u and pendant vertices $u_{i}(1 \leq i \leq n)$.

Define $f: E\left(K_{1, n}\right) \rightarrow\{0,1,2, \ldots, n\}$ by

$$
f\left(u u_{i}\right)= \begin{cases}i-1, & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\ i, & \left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n\end{cases}
$$

Then $f^{*}\left(u_{i}\right)=f\left(u u_{i}\right)$ and $f^{*}(u)=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 3.3. Let f be any edge mean labeling of $K_{1, n}(n \geq 3)$. Then 1 and n must occur as edge labels.

Proof. Let u be the central vertex of $K_{1, n}$.
Suppose 1 is not an edge label.

$$
\text { Then } \quad f^{*}(u)=\left\lceil\frac{0+2+\cdots+n}{n}\right\rceil=\left\lceil\frac{n+1}{2}\right\rceil \geq 2, \quad \text { since } n \geq 3 \text {. }
$$

Therefore there is no vertex with label 1.
Similarly, if n is not an edge label, there is no vertex with label n contradicting that f is an edge mean labeling.

Theorem 3.4. The labeling in Theorem 3.2 is the only edge mean labeling of $K_{1, n}$.
Proof. Let f be an edge mean labeling of $K_{1, n}$ and let r be the number which we are not using in labeling $K_{1, n}$. Then by Theorem 3.3, $1<r<n$ and $f^{*}(u)=\left\lceil\frac{0+1+\cdots+n-r}{n}\right\rceil=$ $\left\lceil\frac{n+1}{2}-\frac{r}{n}\right\rceil$.
Case (i): n is odd, say, $n=2 m+1$. Then $f^{*}(u)=\left\lceil\frac{2 m+2}{2}-\frac{r}{n}\right\rceil=m+1$ since $\frac{r}{n}<1$. Therefore we cannot use $m+1$ as an edge label. Hence $r=m+1$.

Case (ii): n is even, say, $n=2 m$.
$f^{*}(u)=\left\lceil\frac{2 m+1}{2}-\frac{r}{2 n}\right\rceil=\left\lceil m+\frac{1}{2}-\frac{r}{2 m}\right\rceil$.
Subcase (i): Let $r<m$. Then $\frac{r}{2 m}<\frac{1}{2}$ and hence $f^{*}(u)=m+1=f^{*}\left(u_{i}\right)$ for some i.
Subcase (ii): Let $r>m$. Then $\frac{r}{2 m}>\frac{1}{2}$. Also $\frac{r}{2 m}<1$. Therefore $f^{*}(u)=m=f^{*}\left(u_{i}\right)$ for some i.

Thus, the edges of $K_{1, n}$ should be labeled by $0,1,2, \ldots, m, m+2, \ldots, n$ if $n=2 m+1$ and by $0,1,2, \ldots, m-1, m+1, \ldots, n$ if $n=2 m$. Hence the theorem.

Theorem 3.5. The bistar $B_{n, n}$ is an edge mean graph.
Proof. $B_{1,1}$ is P_{4} and hence an edge mean graph. $B_{2,2}$ is an edge mean graph with the given labeling. An edge mean labeling of $B_{2,2}$ is given in Fig. 3.1.

Figure 3.1: An edge mean labeling of $B_{2,2}$.
Let $\mathrm{n} \geq 3$. Let u and v be the central vertices and $u_{i}, v_{i}(1 \leq i \leq n)$ be the pendant vertices of $B_{n, n}$.
Case (i): Let $n=2 m+1$. Define $f: E\left(B_{n, n}\right) \rightarrow\{0,1,2, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
& f\left(u u_{i}\right)= \begin{cases}i-1, & 1 \leq i \leq m+1 \\
i, & m+2 \leq i \leq n\end{cases} \\
& f\left(v v_{i}\right)= \begin{cases}n+i, & 1 \leq i \leq m \\
n+i+1, & m+1 \leq i \leq n\end{cases}
\end{aligned}
$$

and $f(u v)=m+1$.
Then $f^{*}\left(u_{i}\right)=f\left(u u_{i}\right)$ and $f^{*}\left(v_{i}\right)=f\left(v v_{i}\right)$. Also, $f^{*}(u)=m+1$ and $f^{*}(v)=n+m+1$.
Case (ii): Let $n=2 m$. Define $f: E\left(B_{n, n}\right) \rightarrow\{0,1,2, \ldots, 2 n+1\}$ as in Case (i) except for $f(u v)=n+m+1$. It can be verified that $f^{*}(u)=m+1$ and $f^{*}(v)=n+m+1$.

Corollary 3.6. Let u and v be the central vertices of $B_{n, n}$. There always exists an edge mean labeling such that $f^{*}(v)=n+f^{*}(u)$.

Proof. The labeling f given in Theorem 3.5 is one such labeling.
Theorem 3.7. For any $n \geq 2,1$ and $2 n+1$ cannot be the label of the intermediate edge of $B_{n, n}$.

Proof. Let u and v be the central vertices and $u_{i}, v_{i}(1 \leq i \leq n)$ be the pendant vertices of $B_{n, n}$.
(1). Let $f(u v)=1$.

Case (i): Let $n=2$. Let u_{1}, u_{2} and v_{1}, v_{2} be the vertices adjacent to u and v respectively.
Let $f\left(u u_{1}\right)=0$. To get the vertex label 1 , the only choice is $f\left(u u_{2}\right)=2$.
Hence, $f\left(v v_{1}\right), f\left(v v_{2}\right) \in\{3,4,5\}$ and $f\left(v v_{1}\right) \neq f\left(v v_{2}\right)$.
But, for any such choice of $f\left(v v_{1}\right)$ and $f\left(v v_{2}\right)$, the induced map f^{*} cannot be an injection.
Case (ii): $n \geq 3$. Then $\min f^{*}(u)$ or $\min f^{*}(v)=\left\lceil\frac{(0+2+3+\cdots+n)+1}{n+1}\right\rceil \geq 2$.
Hence there is no vertex with label 1.
Hence $f(u v) \neq 1$.
(2). Suppose, $f(u v)=2 n+1$.

Then $\max f^{*}(u)$ or $\max f^{*}(v)=\left\lceil\frac{(n+1)+(n+2)+\cdots+(n+n)+2 n+1}{n+1}\right\rceil \leq 2 n$.
Therefore, there is no vertex with label $2 n+1$. Hence the theorem.

Theorem 3.8. Combs are edge mean graphs.

Proof. Let G_{n} be the comb obtained from a path $P_{n}: u_{1} u_{2} \cdots u_{n-1} u_{n}$ by joining a vertex v_{i} to $u_{i}(1 \leq i \leq n)$. Define $f: E\left(G_{n}\right) \rightarrow\{0,1,2, \ldots, 2 n-1\}$ by

$$
\begin{aligned}
f\left(u_{i} u_{i+1}\right) & = \begin{cases}1, & i=1 \\
2(i-1), & 2 \leq i \leq n-1\end{cases} \\
f\left(u_{i} v_{i}\right) & = \begin{cases}0, & i=1 \\
2 i-1, & 2 \leq i \leq n\end{cases}
\end{aligned}
$$

Then $f^{*}\left(v_{i}\right)=f\left(u_{i} v_{i}\right)$, for $1 \leq i \leq n$.
$f^{*}\left(u_{1}\right)=1, f^{*}\left(u_{2}\right)=2, f^{*}\left(u_{i}\right)=2 i-2,3 \leq i \leq n-1, f^{*}\left(u_{n}\right)=2 n-2$.
Therefore f is an edge mean labeling of G_{n}.

4 Edge mean labeling of some graphs other than trees

Definition 4.1. The graph G^{2} of a graph G has $V\left(G^{2}\right)=V(G)$ with u, v adjacent in G^{2} whenever $d(u, v) \leq 2$ in G. The powers $G^{3}, G^{4} \ldots$ of G are similarly defined.

Theorem 4.2. P_{n}^{k} where $k=\min \{n / 2,5\}$ is an edge mean graph.
Proof. Let P_{n} be the path $u_{1} u_{2} \cdots u_{n}$.
P_{n}^{k} has n vertices and $q=k n-\frac{k(k+1)}{2}$ edges.
$E\left(P_{n}^{k}\right)=\left\{u_{i} u_{i+r}: 1 \leq r \leq k\right.$ and $\left.1 \leq i \leq n-r\right\}$.
Define $f: E\left(P_{n}^{k}\right) \rightarrow\{0,1,2, \ldots, q\}$ by
$f\left(u_{i} u_{i+r}=k i-(k-r), 1 \leq r \leq k-1\right.$ and $1 \leq i \leq n-k+1$.
$f\left(u_{i} u_{i+k}\right)=k i, 1 \leq i \leq n-k$.
$f\left(u_{n-k+2} u_{n-k+3}\right)=k n-k(k-1)=A$ (say).
$f\left(u_{n-k+s} u_{n-k+s+1}\right)=A+(k-2)+(k-3)+\cdots+(k-s+1), 3 \leq s \leq k-1$,
$f\left(u_{n-k+s} u_{n-k+s+t}\right)=f\left(u_{n-k+s} u_{n-k+s+t-1}\right)+1,2 \leq s \leq k-t$ and $2 \leq t \leq k-2$.

It can be verified that
(i) For $1 \leq i \leq k, f^{*}\left(u_{i}\right)=\left\lceil\frac{x}{d\left(u_{i}\right)}\right\rceil$ where $d\left(u_{i}\right)=k+i-1$ and $x=\sum_{r=1}^{k}[k i-(k-r)]+$ $\sum_{r=2}^{i}[(i-r) k+r-1]$.
(ii) For $1 \leq i \leq n-2 k, f^{*}\left(u_{k+i}\right)=\left\lceil\frac{x}{d\left(u_{k+i}\right)}\right\rceil$ where $d\left(u_{k+i}\right)=2 k$ and $x=\sum_{r=1}^{k}[k(k+i)-(k-r)]+\sum_{r=2}^{k+1}[(k+i-r) k+r-1]$.
To determine $f^{*}\left(u_{n-k+1}\right), f^{*}\left(u_{n-k+2}\right), \ldots, f^{*}\left(u_{n}\right)$.
(i) $k=2$.

$$
f^{*}\left(u_{n-1}\right)=2 n-4 ; f^{*}\left(u_{n}\right)=2 n-3 .
$$

(ii) $k=3$.

$$
f^{*}\left(u_{n-2}\right)=3 n-10 ; f^{*}\left(u_{n-1}\right)=3 n-9, f^{*}\left(u_{n}\right)=3 n-7 .
$$

(iii) $k=4$.
$f^{*}\left(u_{n-3}\right)=4 n-19 ; f^{*}\left(u_{n-2}\right)=4 n-16, f^{*}\left(u_{n-1}\right)=4 n-14, f^{*}\left(u_{n}\right)=4 n-12$.
(iv) $k=5$.
$f^{*}\left(u_{n-4}\right)=5 n-30 ; f^{*}\left(u_{n-3}\right)=5 n-27, f^{*}\left(u_{n-2}\right)=5 n-24, f^{*}\left(u_{n-1}\right)=5 n-$ $21, f^{*}\left(u_{n}\right)=5 n-19$.

Hence the theorem.
An edge mean labeling of P_{12}^{5} is given in Fig. 4.1.

Theorem 4.3. The complete graph $k_{n}(n \geq 5)$ is an edge mean graph.
Proof. Case (i): Let $n=5$. An edge mean labeling of K_{5} is given in Fig. 4.2.
Case (ii): Let $n \geq 6$. Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Then $E\left(K_{n}\right)=\left\{v_{i} v_{j}: 1 \leq i \leq n-1 \quad\right.$ and $\left.i+1 \leq j \leq n\right\}$ and $q=\frac{n(n-1)}{2}$.
Define $f: E\left(K_{n}\right) \rightarrow\{1,2, \ldots, q\}$ by $f\left(v_{1} v_{j}\right)=q-(j-2), 2 \leq j \leq n$.

Figure 4.1: An edge mean labeling of P_{12}^{5}.

Figure 4.2: An edge mean labeling of K_{5}.
$f\left(v_{i} v_{j}\right)=f\left(v_{i-1} v_{n}\right)-(j-i), 2 \leq i \leq n-1$ and $i+1 \leq j \leq n$.
It can be verified that $f^{*}\left(v_{1}\right)=\left\lceil\frac{n^{2}-2 n+2}{2}\right\rceil$. For $2 \leq r \leq n, f^{*}\left(v_{r}\right)=\left\lceil\frac{x}{n-1}\right\rceil$ where $x=$ $(r-1) q^{\prime}+(n-r) q^{\prime \prime}-(r-2)(n-2)-(r-3)(n-3)-\cdots-1(n-r+1)-\frac{(n-r-1)(n-r)}{2}$.
Here $q^{\prime}=q-r+2$ and $q^{\prime \prime}=q-(r-1) n+\frac{(r-1) r}{2}$.
Therefore f is an edge mean labeling of K_{n}.
An edge mean labeling of K_{8} is given in Fig. 4.3.

Theorem 4.4. The wheel $W_{n}=C_{n}+k_{1}(n>3)$ is an edge mean graph.

Figure 4.3: An edge mean labeling of K_{8}.

Proof. Let C_{n} be the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$ and $k_{1}=\{u\}$.
Then $E\left(W_{n}\right)=\left\{u_{i} u_{i+1}, u_{i} u, 1 \leq i \leq n\right\}$ and $L=\{1,2, \ldots, 2 n\}$.
Case (i): $n \equiv 0(\bmod 6)$. That is, $n=6 r, r=1,2,3 \ldots$
Define $f: E\left(W_{n}\right) \rightarrow L$ by
$f\left(u_{i} u_{i+1}\right)=2 i, 1 \leq i \leq n-3 ;$
$f\left(u_{n-2} u_{n-1}\right)=2 n, f\left(u_{n-1} u_{n}\right)=2 n-2$,
$f\left(u_{n} u_{1}\right)=2 n-4$.
$f\left(u_{i} u\right)=2 i-1,1 \leq i \leq n$. Then $f^{*}(u)=n, f^{*}\left(u_{1}\right)=4 r, f^{*}\left(u_{i}\right)=2 i-1,2 \leq i \leq n-3$.
$f^{*}\left(u_{n-2}\right)=2 n-3, f^{*}\left(u_{n-1}\right)=2 n-1, f^{*}\left(u_{n}\right)=2 n-2$.
Case (ii): $n \equiv 1(\bmod 6)$. That is $n=6 r+1, r=1,2,3 \ldots$
Define $f: E\left(W_{n}\right) \rightarrow L$ by $f\left(u_{i} u_{i+1}\right)=2 i-1 ; f\left(u_{i} u\right)=2 i, 1 \leq i \leq n$.
Then $f^{*}(u)=n+1, f\left(u_{1}\right)=4 r+2 ; f^{*}\left(u_{i}\right)=2 i-1,2 \leq i \leq n$.
Case (iii): $n \equiv 2(\bmod 6)$. That is $n=6 r+2, r=1,2, \ldots$.
Define $f: E\left(W_{n}\right) \rightarrow L$ by $f\left(u_{i} u_{i+1}\right)=2 i, 1 \leq i \leq n-2 ; f\left(u_{n-1} u_{n}\right)=2 n ; f\left(u_{n} u_{1}\right)=$ $2 n-2$.
$f\left(u_{i} u\right)=2 i-1,1 \leq i \leq n$.
Then $f^{*}(u)=n ; f^{*}\left(u_{1}\right)=4 r+2 ; f^{*}\left(u_{i}\right)=2 i-1,2 \leq i \leq n-2$.
$f^{*}\left(u_{n-1}\right)=2 n-2 ; f^{*}\left(u_{n}\right)=2 n-1$.
Case (iv): $n \equiv 3(\bmod 6)$. That is $n=6 r+3, r=0,1,2, \ldots$.
Subcase (i): When $r=0, n=3$ and $W_{3}=C_{3}+K_{1}=K_{4}$ which is not an edge mean graph by Theorem 5.2.
Subcase (ii): When $r=1,2,3, \ldots$
Define $f: E\left(W_{n}\right) \rightarrow L$ by
$f\left(u_{i} u_{i+1}\right)=2 i-1,1 \leq i \leq n-2 ;$
$f\left(u_{n-1} u_{n}\right)=2 n-1 ; f\left(u_{n} u_{1}\right)=2 n-3 ; f\left(u_{i} u\right)=2 i, 1 \leq i \leq n$.
Then $f^{*}(u)=n+1 ; f^{*}\left(u_{1}\right)=4 r+2, f^{*}\left(u_{i}\right)=2 i-1,2 \leq i \leq n-2$.
$f^{*}\left(u_{n-1}\right)=12 r+4 ; f^{*}\left(u_{n}\right)=12 r+5$.
Case (v): $n \equiv 4(\bmod 6)$. That is $n=6 r+4, r=0,1,2, \ldots$.
Subcase (i): When $r=0, n=4$.
An edge mean labeling of W_{4} is given in Fig. 4.4.
Subcase (ii): When $r=1,2,3, \ldots$
Define $f: E\left(W_{n}\right) \rightarrow L$ by
$f\left(u_{i} u_{i+1}\right)=2 i, f\left(u_{i} u\right)=2 i-1,1 \leq i \leq n$.

Figure 4.4: An edge mean labeling of W_{4}.

Then $f^{*}(u)=n, f^{*}\left(u_{1}\right)=4 r+4, f^{*}\left(u_{i}\right)=2 i-1,2 \leq i \leq n$.
Case (vi): $n \equiv 5(\bmod 6)$. That is $n=6 r+5, r=0,1,2, \ldots$
Define $f: E\left(W_{n}\right) \rightarrow L$ by
$f\left(u_{i} u_{i+1}\right)=2 i-1,1 \leq i \leq n-2$.
$f\left(u_{n-1} u_{n}\right)=2 n-1 ; f\left(u_{n} u_{1}\right)=2 n-3, f\left(u_{i} u\right)=2 i, 1 \leq i \leq n$.
Then $f^{*}(u)=n+1, f^{*}\left(u_{1}\right)=4 r+4, f^{*}\left(u_{i}\right)=2 i-1,2 \leq i \leq n-2$.
$f^{*}\left(u_{n-1}\right)=12 r+8 ; f^{*}\left(u_{n}\right)=12 r+9$.
Thus, W_{n} is an edge mean graph for $n>3$.
An edge mean labeling of W_{8} is given in Fig. 4.5.

5 Some graphs which are not edge mean graphs

In this section we prove that the cycle C_{n}, the complete graph K_{4} and the complete bipartite graph $K_{2,3}$ are not edge mean graphs.

Theorem 5.1. The cycle C_{n} is not an edge mean graph.

Figure 4.5: An edge mean labeling of W_{8}.

Proof. Let f be an edge mean labeling of C_{n}.
Since $q=p=n$ in C_{n}, all the numbers $1,2, \ldots, n$ must appear as vertex label. Also, since $d(v)=2$ for every vertex v in $C_{n}, \min f^{*}(v)=\left\lceil\frac{1+2}{2}\right\rceil=2$.

Therefore, there will not be any vertex with label 1. Hence the theorem.

Theorem 5.2. The complete graph K_{4} is not an edge mean graph.
Proof. Let $V\left(K_{4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
Then $E\left(K_{4}\right)=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4}\right\}$.
Let f be an edge mean labeling of k_{4}.
For any vertex v in $K_{4}, d(v)=3$.
$\min f^{*}(v)=\left\lceil\frac{1+2+3}{3}\right\rceil=2$ and $\max f^{*}(v)=\left\lceil\frac{4+5+6}{3}\right\rceil=5$.
Hence the four vertices get the labels $2,3,4,5$ and are distinct. To get the label 2 all
the three edges incident on a vertex must be labeled $1,2,3$.
Let $f\left(v_{1} v_{2}\right)=1, f\left(v_{1} v_{3}\right)=2, f\left(v_{1} v_{4}\right)=3$ so that $f^{*}\left(v_{1}\right)=2$.
Case (i): Let $f\left(v_{2} v_{3}\right)=4$.
Then $f\left(v_{2} v_{4}\right), f\left(v_{3} v_{4}\right) \in\{5,6\}$ and $f\left(v_{2} v_{4}\right) \neq f\left(v_{3} v_{4}\right)$.
In both cases $f^{*}\left(v_{2}\right)=f^{*}\left(v_{3}\right)=4$.
Case (ii): Let $f\left(v_{2} v_{3}\right)=5$.
Then $f\left(v_{2} v_{4}\right)=4$ and $f\left(v_{3} v_{4}\right)=6$ give $f^{*}\left(v_{3}\right)=f^{*}\left(v_{4}\right)=5$.
$f\left(v_{2} v_{4}\right)=6$ and $f\left(v_{3} v_{4}\right)=4$ give $f^{*}\left(v_{2}\right)=f^{*}\left(v_{3}\right)=4$.
Case (iii): Let $f\left(v_{2} v_{3}\right)=6$.
Then $f\left(v_{2} v_{4}\right), f\left(v_{3} v_{4}\right) \in\{4,5\}$ and $f\left(v_{2} v_{4}\right) \neq f\left(v_{3} v_{4}\right)$ give $f^{*}\left(v_{2}\right)=f^{*}\left(v_{4}\right)=4$.
Therefore, f cannot be an edge mean labeling of K_{4}.
Hence K_{4} is not an edge mean graph.
Theorem 5.3. $K_{2,3}$ is not an edge mean graph.
Proof. Let $V=\left\{V_{1}, V_{2}\right\}$ where $V_{1}=\left\{u_{1}, u_{2}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a bipartition of $V\left(K_{2,3}\right)$.

Then $E\left(K_{2,3}\right)=\left\{u_{1} v_{i}, u_{2} v_{i}: 1 \leq i \leq 3\right\}$.
Suppose $f: E\left(K_{2,3}\right) \rightarrow\{1,2,3,4,5,6\}$ is an edge mean labeling of $K_{2,3}$.
Since for any $v \in V, 2 \leq f^{*}(v) \leq 6$, all the labels $2,3,4,5,6$ must be assumed by the vertices of $K_{2,3}$.

Now, to get the vertex label 2 all the edges incident on u_{1} or u_{2} must have the labels 1 , 2,3 (or) the edges incident on v_{1} or v_{2} or v_{3} must have the label pair $(1,2)$ or $(1,3)$. In the first case, there is no possibility of getting the vertex label 6 .

Case (ii): Let $f\left(u_{1} v_{1}\right)=1$ and $f\left(u_{2} v_{1}\right)=2$.
Then $f^{*}\left(v_{1}\right)=2$. Now to get the label 6 we must have
(*) $f\left(u_{1} v_{2}\right), f\left(u_{2} v_{2}\right) \in\{5,6\}$ and $f\left(u_{1} v_{2}\right) \neq f\left(u_{2} v_{2}\right)$ or
$(* *) f\left(u_{1} v_{3}\right), f\left(u_{2} v_{3}\right) \in\{5,6\}$ and $f\left(u_{1} v_{3}\right) \neq f\left(u_{2} v_{3}\right)$.
The two cases $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ are identical. So, we discuss only the case $\left({ }^{*}\right)$.
Subcase (i): Let $f\left(u_{1} v_{2}\right)=5$ and $f\left(u_{2} v_{2}\right)=6$.
Then $f\left(u_{1} v_{3}\right), f\left(u_{2} v_{3}\right) \in\{3,4\}$ and $f\left(u_{1} v_{3}\right) \neq f\left(u_{2} v_{3}\right)$ imply $f^{*}\left(u_{2}\right)=f^{*}\left(v_{3}\right)=4$.
Subcase (ii): Let $f\left(u_{1} v_{2}\right)=6$ and $f\left(u_{2} v_{2}\right)=5$.
Then $f\left(u_{1} v_{3}\right), f\left(u_{2} v_{3}\right) \in\{3,4\}$ and $f\left(u_{1} v_{3}\right) \neq f\left(u_{2} v_{3}\right)$.
In this case $f^{*}\left(u_{1}\right)=f^{*}\left(u_{2}\right)=f^{*}\left(v_{3}\right)=4$.
Case (iii): Let $f\left(u_{1} v_{1}\right)=1$ and $f\left(u_{2} v_{1}\right)=3$. Then $f^{*}\left(v_{1}\right)=2$. Proceed as in Case (ii).
Subcase (i): Let $f\left(u_{1} v_{2}\right)=5$ and $f\left(u_{2} v_{2}\right)=6$.
Then $f\left(u_{1} v_{3}\right)=2$ and $f\left(u_{2} v_{3}\right)=4$ imply $f^{*}\left(u_{1}\right)=f^{*}\left(v_{3}\right)=3$.
$f\left(u_{1} v_{3}\right)=4$ and $f\left(u_{2} v_{3}\right)=2$ imply $f^{*}\left(u_{1}\right)=f^{*}\left(u_{2}\right)=4$.
Subcase(ii): Let $f\left(u_{1} v_{2}\right)=6$ and $f\left(u_{2} v_{2}\right)=5$.
Then $f\left(u_{1} v_{3}\right)=2$ and $f\left(u_{2} v_{3}\right)=4$ imply $f^{*}\left(u_{1}\right)=f^{*}\left(v_{3}\right)=3$.
$f^{*}\left(u_{1} v_{3}\right)=4$ and $f\left(u_{2} v_{3}\right)=2$ imply $f^{*}\left(u_{1}\right)=f^{*}\left(u_{2}\right)=4$.
Therefore f is not an edge mean labeling of $K_{2,3}$.
Hence $K_{2,3}$ is not an edge mean graph.

References

[1] B.D. Acharya and S.M. Hegde, Arithmetic Graphs, Journal of Graph Theory, 14(3), 275299 (1989).
[2] L.W. Beineke and S.M. Hegde, Strongly Multiplicative Graphs, Discussions Mathematics-Graph Theory, 21(2001) 63-75.
[3] J.A. Gallian, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics 14 (2007) \#DS6.
[4] F. Harary, Graph Theory, Addison-Wesley, Reading MA (1969).
[5] R.M. Ponraj, Mean Graph, Ph.D. Thesis, Manonmaniam Sundaranar University, Tamil Nadu (2005).
[6] M. Sundaram, R. Ponraj and S. Somasundaram, On a Prime Labeling conjecture, ARS Combinatoria, 79 (2006), 205-209.

[^0]: ${ }^{1}$ Department of Mathematics, Rani Anna Government College for Women, Tirunelveli-627008, India
 ${ }^{2}$ Department of Mathematics, St. Jude's College, Thoothoor-629176, India
 ${ }^{3}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, India

